Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 25: 100996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420143

RESUMO

Reactive Oxygen Species (ROS) refers to a highly reactive class of oxidizing species that have the potential to induce cellular apoptosis and necrosis. Cuproptosis, a type of cell death, is primarily associated with the effects of copper ions. However, the specific relationship between ROS, cuproptosis, and osteosarcoma (OS) remains relatively unexplored. Additionally, there is limited research on the use of cuproptosis in conjunction with oxidative stress for treating OS and inhibiting tumor-induced bone destruction. To address these gaps, a novel treatment approach has been developed for OS and neoplastic bone destruction. This approach involves the utilization of glutathione (GSH) and pH-responsive organic-inorganic mesoporous silica nanoparticles@Cu2S@oxidized Dextran (short for MCD). The MCD material demonstrates excellent cytocompatibility, osteogenesis, tumor suppression, and the ability to inhibit osteoclast formation. The specific mechanism of action involves the mitochondria of the MCD material inhibiting key proteins in the tricarboxylic acid (TCA) cycle. Simultaneously, the generation of ROS promotes this inhibition and leads to alterations in cellular energy metabolism. Moreover, the MCD biomaterial exhibits promising mild-temperature photothermal therapy in the second near-infrared (NIR-II) range, effectively mitigating tumor growth and OS-induced bone destruction in vivo.

2.
Eur J Pharmacol ; 965: 176326, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220141

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degeneration and subchondral bone remodelling. Currently, conservative treatment strategies cannot effectively alleviate the progression of OA. In this study, we used computer network analysis to show that Nitisinone (NTBC) is closely related to extracellular matrix degradation in OA and mainly interferes with the TNF-α signaling pathway. NTBC is an orphan drug used to treat hereditary type I tyrosinemia by altering phenylalanine/tyrosine metabolic flow. In this study, we found that NTBC effectively reduced chondrocyte inflammation and extracellular matrix degradation induced by TNF-α. Mechanistically, NTBC inhibited the cGAS/STING signaling pathway and reduced activation of the STING-dependent NF-κB pathway to alleviate inflammation. In addition, NTBC inhibited osteoclastogenesis and delayed the occurrence of subchondral bone remodelling. In mice with ACLT-induced osteoarthritis, intra-articular injection of NTBC significantly reduced cartilage degradation and subchondral bone remodelling. NTBC showed impressive therapeutic efficacy as a potential pharmaceutical intervention for the treatment of OA.


Assuntos
Cartilagem Articular , Cicloexanonas , Nitrobenzoatos , Osteoartrite , Camundongos , Animais , NF-kappa B/metabolismo , Osteogênese , Fator de Necrose Tumoral alfa/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/tratamento farmacológico , Condrócitos
3.
Free Radic Biol Med ; 213: 174-189, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246515

RESUMO

Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Idoso , Osteogênese/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carnitina/metabolismo , Transdução de Sinais , Osteoclastos/metabolismo , Macrófagos/metabolismo , Reabsorção Óssea/complicações , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/genética , Ligante RANK/farmacologia
4.
FASEB J ; 37(12): e23303, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983963

RESUMO

Lumbar intervertebral disc degeneration(IDD) is a prevalent inflammatory disease caused by many proinflammatory factors, such as TNF and IL-1ß. Migration inhibitory factor (MIF) is an upstream inflammatory factor widely expressed in vivo that is associated with a variety of inflammatory diseases or malignant tumors and has potential therapeutic value in many diseases. We explored the role of MIF in intervertebral disc degeneration by regulating the content of exogenous MIF or the expression of MIF in cells. Upon inducing degeneration of nucleus pulposus (NP) cells with IL-1ß, we found that the increase in intracellular and exogenous MIF promoted the catabolism induced by proinflammatory factors in NP cells, while silencing of the MIF gene alleviated the degeneration to some extent. In a mouse model, the intervertebral disc degeneration of MIF-KO mice was significantly less than that of wild-type mice. To explore the treatment of intervertebral disc degeneration, we selected the small-molecular MIF inhibitor CPSI-1306. CPSI-1306 had a therapeutic effect on intervertebral disc degeneration in the mouse model. In summary, we believe that MIF plays an important role in intervertebral disc degeneration and is a potential therapeutic target for the treatment of intervertebral disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Fatores Inibidores da Migração de Macrófagos , Núcleo Pulposo , Camundongos , Animais , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Transdução de Sinais/fisiologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Disco Intervertebral/metabolismo
5.
Phytother Res ; 37(8): 3363-3379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37002905

RESUMO

Formononetin (FMN) is a phytoestrogen that belongs to the isoflavone family. It has antioxidant and anti-inflammatory effects, as well as, many other biological activities. Existing evidence has aroused interest in its ability to protect against osteoarthritis (OA) and promote bone remodeling. To date, research on this topic has not been thorough and many issues remain controversial. Therefore, the purpose of our study was to explore the protective effect of FMN against knee injury and clarify the possible molecular mechanisms. We found that FMN inhibited osteoclast formation induced by receptor activator of NF-κB ligand (RANKL). Inhibition of the phosphorylation and nuclear translocation of p65 in the NF-κB signaling pathway plays a role in this effect. Similarly, during the inflammatory response of primary knee cartilage cells activated by IL-1ß, FMN inhibited the NF-κB signaling pathway and the phosphorylation of the ERK and JNK proteins in the MAPK signaling pathway to suppress the inflammatory response. In addition, in vivo experiments showed that both low- and high-dose FMN had a clear protective effect against knee injury in the DMM (destabilization of the medial meniscus) model, and the therapeutic effect of high-dose FMN was stronger. In conclusion, these studies provide evidence of the protective effect of FMN against knee injury.


Assuntos
Traumatismos do Joelho , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Articulação do Joelho/metabolismo , Condrócitos
6.
Iran J Basic Med Sci ; 26(2): 157-163, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742139

RESUMO

Objectives: Recently, studies on microRNAs (miRNAs) and their targets and related genes have provided new therapeutic opportunities for controlling intervertebral disc degeneration (IDD). We aimed to investigate the effects of miR-148a-3p overexpression on IDD progression. Materials and Methods: This study used microRNA microarrays to analyze key regulators of IDD. Q-PCR was used to verify the IL-1ß-induced down-regulation of miR-148a-3p expression both in nucleus pulposus (NP) tissues of IDD patients and in degenerated NP cells (NPCs) of rats. Rat NPC micromass cultures and ex vivo intervertebral disc (IVD) culture models were established, and histological staining was performed to verify the effect of miR-148a-3p on the general morphology and proteoglycan and collagen contents of IVDs. In addition, q-PCR and western blotting analyses were performed to examine the expression of ECM molecules and matrix-degrading enzymes. A luciferase reporter assay was used to confirm the target genes of miR-148a-3p. Results: Our data revealed that miR-148a-3p was down-regulated in IDD. Overexpression of miR-148a-3p had no effect on ACAN or COL2A1 gene expression but decreased MMP3, MMP13, and ADAMTS5 gene expression. The matrix deposited by miR-148a-3p-overexpressing rat NPCs contained high levels of proteoglycans and collagen. The ex vivo experiments verified that agomiR-148a-3p alleviated the NPC matrix degradation induced by IL-1ß. A luciferase reporter assay confirmed that miR-148a-3p directly targeted ADAMTS5 and MMP13. Conclusion: We proved that miR-148a-3p can attenuate ECM loss and protect NP function by inhibiting matrix-degrading enzymes.

7.
Cell Death Discov ; 8(1): 470, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446758

RESUMO

Bone metabolic homeostasis is largely dependent on the dynamic balance between osteoblasts and osteoclasts. MicroRNAs (miRNAs) play critical roles in regulating bone metabolism. In this study, we explored the role of a new miRNA (miR-148a) in osteoporosis. We compared the bone phenotype between miR-148a knockout (KO) mice and the wild-type (WT) littermates. We found miR-148a KO mice exhibited an increased bone mass phenotype and decreased osteoclastogenesis compared to the WT group. In vitro, miR-148a overexpression promoted osteoclastogenesis and bone resorption function. Mechanistically, NRP1 was identified as a novel direct target of miR-148a, and NRP1 silencing reversed the effect of miR-148a knockout. In OVX and calvarial osteolysis models, miR-148a KO protects mice against excessive bone resorption, while miR-148a agomiR/AAV-shNRP1 accelerates pathologic bone loss. Finally, the miR-148a level was found to be positively correlated with ß-CTX in postmenopausal osteoporosis (PMOP) serum specimens. In summary, our findings revealed that miR-148a genetic deletion ameliorates bone loss under physiological and pathological conditions by targeting NRP1. In osteoclast-related bone metabolic diseases such as PMOP, miR-148a may be an attractive therapeutic target in the future.

8.
Front Pharmacol ; 12: 774709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899338

RESUMO

Osteoporosis is characterized by a decrease in bone mass and destruction of the bone microarchitecture, and it commonly occurs in postmenopausal women and the elderly. Overactivation of osteoclasts caused by the inflammatory response or oxidative stress leads to osteoporosis. An increasing number of studies have suggested that intracellular reactive oxygen species (ROS) are strongly associated with osteoclastogenesis. As a novel angiotensin (Ang) II receptor blocker (ARB), azilsartan was reported to be associated with the inhibition of intracellular oxidative stress processes. However, the relationship between azilsartan and osteoclastogenesis is still unknown. In this study, we explored the effect of azilsartan on ovariectomy-induced osteoporosis in mice. Azilsartan significantly inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis and downregulated the expression of osteoclast-associated markers (Nfatc1, c-Fos, and Ctsk) in vitro. Furthermore, azilsartan reduced RANKL-induced ROS production by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Mechanistically, azilsartan inhibited the activation of MAPK/NF-κB signaling pathways, while Nrf2 silencing reversed the inhibitory effect of azilsartan on MAPK/NF-κB signaling pathways. Consistent with the in vitro data, azilsartan administration ameliorated ovariectomy (OVX)-induced osteoporosis, and decreased ROS levels in vivo. In conclusion, azilsartan inhibited oxidative stress and may be a novel treatment strategy for osteoporosis caused by osteoclast overactivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...